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UNIFORMLY COMPLEMENTED I;’s IN
QUASI-REFLEXIVE BANACH SPACES

BY
STEVEN F. BELLENOT

ABSTRACT

It is shown that for every non-reflexive Banach space X with X**/X reflexive
there exists a uniformly bounded sequence of projections {P, }7_, whose ranges
are uniformly isomorphic to {I7}7_, either for p =1, or p =2 or for p = . The
proof uses knowledge of the transfinite dual X*, ESA Schauder decompositions
and proof of a similar statement for spaces with an unconditional basis due to
Tzafriri.

It has been conjectured that each infinite dimensional Banach space X has
uniformly complemented I;’s [8] (and see [12]). By X having uniformly
complemented /;;’s, we mean there is some constant K andsome p=1orp =2
or p = » and a sequence {P, }»-, of projections on X, so that for each n, | P, | = K
and d (I}, P.(X)) = K. (Since I3 is uniformly complemented in /3", for 1 < p <o,
the limitation that p =1, 2 or ® is not of consequence.) Our main result is:

THEOREM 1. If X is a non-reflexive Banach space, with X **/ X reflexive, then
X has uniformly complemented 1,’s.

It is known that the infinite dimensional Banach space X has uniformly
complemented [/}’s if either

(i) X has an unconditional basis [14],

(ii) X has Lust and is not super-reflexive [6],

(iif) X is a subspace of a Banach lattice Y and [. is not finitely representable
in Y [7], or if

(iv) X is a special reflexive Banach space (see [11] for details).

Each of the above results requires some ‘‘unconditional-basis-like structure.”
In contrast, it is known that if X satisfies the hypothesis of Theorem 1, then X is
not isomorphic to a subspace of any Y which has an unconditional basis, or more
generally, any Banach lattice Y with property wu.
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Theorem 1 also yields new partial positive answers to a question of Grothen-
dieck [5] about the existence of non-nuclear operators (see Corollary 14).

The proof of Theorem 1 is given in Section 3. The proof makes use of
properties of the transfinite dual X of X and these results are in Section 1. In
Section 2, we prove the following generalization of the result of Tzafriri’s quoted
in (i) above: subsymmetric Schauder decompositions have uniformly com-
plemented I’s.

§0. Preliminaries

We will adopt the Standard Definitions, Notations and Conventions of [10, p.
xi-xiii] where all undefined terms may be found. We will write {x,}, [x.], Z x, for
{x.}n=1, closed linear span {x,}»-, and 2 x,, respectively. All our spaces are
normed and are usually complete.

Let X be a Banach space. A sequence {X,} at closed subspaces of X is called a
Schauder decomposition [10, p. 47ff] if X =[X.] and there is a constant K, so
that

ptq

zx.-

t

© =K

P
E Xi s

1

for all positive integers p, q and elements x; € X;. The decomposition is said to
be unconditional if there is a constant M so that

i b,'x,'

for all positive integers n, elements x; € X, and scalars b; with |b,|=1. The
smallest constant M which satisfies (1) is called the unconditional constant of the
decomposition.

We will say that the decomposition {X,} of X is fibered by Y if there are
isometries ¢, : Y — X, and 6, : X, > Y with ¢,0, = 6.¢, = identity, for each n.
A fibered decomposition {X,} of X is said to be subsymmetric if it is
unconditional and if

-

for all positive integers n, increasing sequences of positive integers {m(i)} and

n

S

1

(1) =M

b

= l Z Omi(0:X:)

elements x; € X;. Standard re-norming techniques will yield an equivalent
subsymmetric norm on a subsymmetric decomposition whose unconditional
constant is one (see [10, p. 114]). If {X,} is a subsymmetric decomposition, then
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the projection T, : X — X which takes = x; onto =} ¢ (w) has norm at most two,
where w = (Z7 6x;)/n (see [10, p. 116]).

We will say that the fibered decomposition {X,} of X is ESA, if for each n, m
with 1 =m =n and elements x; € X;, we have '

ix,- gllmz_lxi+ix,-+wm“
1 1

m+1
when w,, is either @n.i(6:Xn), M1, or Gn-1(0.x.), m =2. This definition
implies the notion of ESA basis, as in [2], if the fiber is one-dimensional (see {2,
p. 288] for a proof of this).

We also need the notion of the transfinite dual X of a Banach space X as in
[3]- Let X° be X and inductively define X"*' =(X")*, the dual of X". Let
J.: X" = X" be the canonical injection. We will identify X" with its image
under J, in X"™°. Then X* is defined to be the completion of the norm space
U X?". We will use the following notation for adjoints, if T"”: X" — Y" then
TP Y*'— X"*' is the map (T™)*, and T"=T.

€)

§1. Operators on X*

For any Banach spaces X and Y any bounded linear operator T: X — Y, the
diagram in Fig. 1 commutes (here J is the canonical injection) and || T?|| = || T|.

X—>Y
XZ 7@ YZ

Fig. 1.

It follows now from Fig. 2, that there is a unique operator T : X“ — Y* that
extends each T®: X" — Y*", furthermore || T* || = || T|. (The downward point-
ing arrows are the canonical injections.)

In particular, for T: X" — X", between even duals of X, then T* maps X*
into itself. Furthermore, if T is an isometry (respectively, projection, contrac-
tion) then T* is also an isometry (respectively, projection, contraction).

Actually it is not hard to see that €}, which assigns X to each Banach space X,
and T to each bounded operator T, is a covariant functor. (Note that X* = X if
X is reflexive.) To see this, let T, S, R be operators so that T = SR, then
T4 =8°YR®" and hence T* = S“R*“. Furthermore, if T:X — X is id, the
identity, then T* =id on X,
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X —Y

T
X2 — Y2

|

x5y
o
o 12 Tes y2r
Ll
X+ 25 ye
Fig. 2.

DerFiniTION 2. Following Perrott [13], we define the isometries S; for i 20
and the contractions Q; for i =1 on X* by (see Fig. 3)

4 Si =(Jx)*, where Jo: X* > X*** and i=0, and
5) Q =(J%)°, where J§: X*”?—> X" andiz=1.

Our next result gives a “multiplication table” for these operators. It is well
known that if X is non-reflexive, then the S;’s are not the id. In fact, J& and J;
both: X*— X* disagree on each x € X*\Jo(X°) was known by Dixmier [4] in
1948.

ProrosITION 3.
Sk 1S ifj=k

(6)
SS- if j>k;

Ok IQ; if j < k,
¢ QQ. =

QQ.  ifj=k;

Q1S if j<k,

®
QS i+1 ifj.%k;

Sk IO ifj<k’

if j=korj=k+1,

©)
&,, if j>k+1.
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J (1)
. 2 . . Jai-1 .
2 2i+2 2i+2 2
X —5 X xE L, X
D Div2 Liva J L
@ 3
x2i+2 % X2+ ) GaL 2i-1 G
"2i+2 "2:‘ +4 Jzi+4 J "zi+z
2 9,
2i+4 1 2i+6 2i+6 ' 2i+4
XX XX
(2k) J(2k+l) L
2i+2k U 2i+2k +2 i+2k+2 72t i
X i X i X2| 2k +2 X2|+2k
JZA' +2k "Zi+2k +2 JZi+2k +2 j "Zi+2k
@K+ J@kED
. i . . 2i-1 .
X2|+2k+2 X21+2k +4 X21+2k+4 X2:+2k+2
w Si w oi
X — s X X — X

Fig. 3.

Proor. These relations are obtained by looking at the definition of S; and Q
(see Fig. 3), their transposes and using the functor €. The exception is the middle
line of (9), which we do in detail.

It is well known and easy to check that the composite map:

_ )
(10) XZ:‘ Y X2i+2 T2 Xz.'

is the identity. Hence Q.S; = (J5.)*(J=)* =id.
Each statement like (10) is a dual statement obtained by subtracting one from
everything and taking transposes. For (10) we have

2i—1 T 2i+1 o i
X i > X i qu—l

is the id (here i must be greater than one). Transposing we obtain

Jwm J@
XZi 2i-1 X2i+2 2i-2 Xz.-



Vol. 39, 1981 QUASI-REFLEXIVE BANACH SPACES 239

whose composition is also the id. Hence id = (J%-,)*(J%-,)* = Q:Si—, for i = 1,
since (J$-.)° = (Ju—)” = Si—;. This completes the middle line of (9).
To obtain (6), look at the k th box in the definition of S; in Fig. 3. We have

2k) __ 2k +2)
Jzi+2k+21(2i )_](21' ]2i+2k

which by (1 yields S 1S = S8Siwk, i, kK =0. Inspection will show this is
equivalent to (6).

The dual to the k-th above yields Q:Qi k1= QiQ;, i =1, k =0 which is
equivalent to (7).

Now looking at the k-th box in the definition of Q; in Fig. 3 we obtain

SiQi = O.'Si+k+1, i= 1, k=0

which yields half of (8) and (9). The other half follows from the dual of this k-th
box

SiQisirr = Qisr2Si, i=z0, k=0.
This completes the proof.

COROLLARY 4.

(11) SiQiSiQi=S8:Q7, n=max{i,j}, ifij=0;

(12) 5.4S1Q1=818Q7 = S1Q1Swk,  if n=0, k=1;

(13)  QuiknSIQI=Si1QnQ" = S7Q 1 Quskni, if nZ0, k=1,

(14) Qu.:StQY = Q,SfQF and S..StQi=S.StQF,  ifk=0;
(15) STQiQun = StQYY,  if k=0. |

(16) Let n>j=1. Then TV(S7'Q\"' - 81Q))=0 when V=S, or Q, and
T=S8Q\or I-S7'Q.

ProoF. The equations (11)-(15) are straightforward applications of Proposi-
tion 3. To see (16), consider the special case, V=Q,, T =S 'Q7"". Now (16)
follows from (15) and $77' QST ?Q1 = ST'Q = S77'Q1Si 'Q7 . Otherwise,
(12) or (13) implies T commutes with V and V(S{7'Q{"— SiQ}) =0 follows
from (11).

REMARK. One can obtain similar relations for general T:X*" — X*" from
the definition of T*. Namely

T“Swik = SmuT® and Qm+k+1Tw = Tan+k+1, k=0.
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The next Lemma is most likely known, a proof is included for completeness.

Lemma 5. If S, Q: X — X are norm one operators, with S an isometry and
QS =1id, then the kernel of the norm one projection S"Q" is the direct sum
Y1® Yz@' . @ Yn, Where Y1 = ker 01 and }/,‘.;.1 = S(}’,).

Proor. Let P, =S8"Q". Since $"Q"S"Q" =S"id Q" = P,, we have that P,
is a projection, similarly P.P, = PP, = Pqaxmn. Thus the kernel of P, is the
direct sum

(I-PY)(X)D (P~ P)(X)D - - D (Po-1— P )(X).

Since S is an isometry, ker Q = ker P, = Y,. We complete, the proof by showing
Y, = (P.-;— P,)(X) by induction. If y € Y,, there is x € Y; so that $""'x = y.
Since P,;S" 'x =S8"'(id)x =y and P.S" 'x =5"Qidx = $"0=0, we have
one inclusion. Suppose x = P,_;x — P.x = S(P._,— P,_,)Qx. Taking Q of both
sides implies Ox €(P,-,—P.-)(X)=Y,., and so x=Px€E€Y, since
(Pn—l_Pn)P1=Pn~1_Pn-

COROLLARY 6. Let Y =Y, = kernel of Q, in X* and let Y,., = S\(Y:). For
y €Y, define y, =y and yi., = Si(y:).

Then Si(y;) = yirj, Quly:) =0, and Qu(yii)=1y, foriz1.

Furthermore, S.(y;) = yi+1, Q(¥;) = yi-1, if j=i>1 and Si(Y;), Q:(Y;)CY,, if
1=j<i

Proor. The Furthermore statement follows from (14) and (16) of
Corollary 4.

Unfortunately, S I Y; need not be the identity for 1 =j <k,

ProprosITION 7. The following are equivalent:

(i) S:| Y, is the identity.

(i) T|Y; is the identity, for T=S, or Q,and n>j=1.
(iii) S.|Y: is the identity, for some n = 1.

(iv) The space X*/X° is reflexive.

PrOOF. Since S,.,S. = S,S,, we have S, | Y =id implies S,.,| Y =id. Con-
versely, if S,..| Y =id and S.(Y)CY, it follows that S, is a projection on Y.
Since S, is an isometry, kerS, ={0} and hence S,.|Y =id. Therefore, (iii)
implies (i) implies S, | Y, =1id for n > 1.

This implies (i) for T=S,, since by (12), we have S.|Y;=
Si7(Sn-j+1| YOI Since Q.S, =id, (ii) is true for T = Q, as well. Therefore
(i), (ii) and (iii) are equivalent.
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Now consider Z = X*/X" and let T: X*— Z be the quotient map. It is well
known [4], that T®: X*— Z* has a right inverse V:Z°— X" so that V is an
isometry and the short exact sequence

00—z x+ 2 x5
splits via Jy: X°— X*. It follows that VP(Z*)=kerJ;’, VI(ZH)NI(X*) =
V(Z?) and that the short exact sequence

@ O'
— 7 — X*— X*—>0

splits via S,: X* — X*.

Now if Z is not reflexive, then Z*# Z? and there is x € ker JO\J(X*) C Y.
Hence S:x = J9x # Jox = x and so (i) is false. Thus (i) implies (iv). Conversely, if
Z is reflexive, Y; =ker Q, = V*(Z*) = V(Z") and S is the identity on all of X’
and the proof is complete.

ReEMARK. We note that S, defined for X* restricted to V“(Z*) yields S,
defined for Z*, since

-

v
zZ— X’
5) lh
v2)
Z4 - X6
commutes.

PrOPOSITION 8. If X is non-reflexive but X*/X" is reflexive then using the
notation of Corollary 6, the fibered decomposition {Y;} is ESA.

Proor. If{y}i..CY=Y,,lety;=S"(y'). We must show that the norm of
z =3]_,y} is at least as big as the norm of each of the following elements:

m-—1 n
(17) Dyt D yit W,
1 M+1

for w, =yms O ymoi, 1I=m =n [set yo=0].
This is easy using the results of Corollary 6 and Proposition 7 since either
Qn+2Smz or S0,z is the vector (17) and these operators have norm one.

Remark. If X?/X° is one-dimensional, this is a result of Perrott [13]. In fact,
the proof of Proposition 8 is very much like that in [13].
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PROPOSITION 9. A fibered ESA decomposition has a complemented subspace
with a fibered subsymmetric decomposition.

Proor. For the reader’s convenience we will prove this using the notations
used in the proof of Proposition 8. Note that the operators S; and Q;, i =1 are
well-defined on the span {Y;}. First we show these operators must have norm
one.

To see || S| =1, note

N i=1 n n
;ﬂ"z g...";yH;y;H =”s]2y,”

Actually S, is an isometry since these steps are reversible. The norm of Q, is one
since

n—1
2 yi+yr,

n i~] n i—1 n
"Z y:lH‘E yityiat 2 y}” =“z yityiat 2 yia I,
i=1 j=1 j=i+1 j=1 =i+l

which is [| Qs (S, y))l|

Let Z; C Yz + Y be defined by Z; ={y.i-1 — y.i:y € Y}. Note that {Z;} is a
block decomposition of the {Y;}, fibered by Z,. We claim that [ Z;] is the desired
subspace.

First {Z} is orthogonal, hence unconditional, for reasons similar to the proof
of this result for ESA basis in [2]. To illustrate this, we show how to remove the
middle term of A =||z{—~ z3+ z3— z3+ zi— z}]|. This norm is equal to the norm
of each of

Zi—z3+ 2 =zl t ZNea— Z s, 3=i=N+2.
Averaging we have
Az zi— 234+ (25— zhe3)IN + 2h1a— Znas|l
=|lzi—zi+ (23— 2)IN + z3—zi|| = || z1 — 23 + 23— 22|

The decomposition is subsymmetric, which can be seen by applying suitable
repetitions of the isometries S;’s as in [13].
Finally the projection P is given by

- Y 1< . . . .
P(3v) =33 oati-yi i yi).

It is straightforward to check that P?> = P. To see that P is bounded, it suffices to
show I — P is bounded. Now
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- P)(i ) %2()’2-1+Y2n1+)’2u+)’2:)

;[( 860684045*02) + ( 5506330481 Qz)] (Zl yi),

which clearly has norm one. This completes the proof.

ReMARK. The operator 3[(- - SQ6S:Q.8:Q2) + (- - $5065;Q.5,Q,)] is a
well-defined norm one projection in each X“. To see this note that the collection
{S24Q2n, S2a-1Q2s: 1 =1,2,-- -} i$ a collection of commuting projections except
for 8:.Q205:20-1Q2n = $:2.Q2n and Sz0-1Q2.5:,Q2n = S24-1Q2s. Since $,Q-, is the
identity on X", the infinite composition - - - $,Q.S.Q; is a well-defined norm
one operator on L X" which is dense in X“. If P,R are the two infinite
compositions above we have PR = P and RP = R and the result follows.

§2. Complemented /;’s in subsymmetric decompositions

In [14], Tzafriri proved that Banach spaces with an unconditional basis have
uniformly complemented [}’s for either p = 1,2 or p = «. Proposition 11 shows
how to modify Tzafriri’s proof to handle the case for Banach spaces with a
subsymmetric decomposition. There are three points in which the proof below
differs from that of Tzafriri. We have no need for Ramsey’s Theorem,
proposition 5 of [14] needs the addition of Lemma 10 and case III of theorem 1
of [14] needs a different argument.

LemMa 10. If {y;}'C X and {y*}\' C X* are a bi-orthogonal sequence. Sup-
pose there is a constant K so that for any scalars {a.},

Sales($ir)

and

N N 1/2
Za.-y’.-‘ éK(ZIa,IZ) .
1 1
then the projection Px = =1 y*(x)y: has norm =K* and d(P(X),1})=K".
PROOF. Straightforward.

ProrosiTioN 11.  If X has a subsymmetric decomposition {Y,} with fiber Y,
then X has uniformly complemented 1;'s.
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Proor. We follow the proof of theorem 1 of [14]. As in [14] we may assume
that the unconditional constant is one, and we identify three cases.

Let y € Y (respectively y* € Y*) be a norm one element, define A(y,n) =
I3 y: || (respectively u(y*, n)=|Z7y*]).

Case I For each h>1 there are y €Y with |ly]|=1 and n so that
A(y, hn)/A(y, n)<2. Then as in [14], there is are [.’s uniformly complemented in
X.

Case II. For each h >1 there are y*€ Y* with ||[y*|=1 and n so that
p(y* hn)/u(y*, n)<2. Then similar to case II in [14], there are uniformly
complemented Ii’s in X.

Case III. All others. Using proposition 4 of [14], we have the existence of a
constant A and q >2 so that for any norm one elements yE Y or y*€ Y* we

have
(18) "Z” /A(y,n)éA(i|a,.|")”q/,,1/q, and
19 Iia.-y"{ /p,(y*,n)éA(iiaiiq)uq/nuq

for any scalars {a;}. [Here A, q are independent of y, y* and n.]

To complete the proof it suffices to find y*, y with y*(y)=1 and lower
Lq’-estimates for (18) and (19), where 1/q'+1/q = 1. This follows since the
Rademacher elements of [y ]i" and [y *]i" satisfy the hypothesis of Lemma 10 (see
proposition 5 of [14]).

To do this let n be given and let N =2" and define B =inf{A(y, N): y € Y,
fly|=1}. Choose y € Y, so that ||y|=1 and B=A(y, N)=<2B. Let y*€ Y*,
ly*ll=y*(y)=1, clearly u(y*, N)A(y, N)=N. Let z € X with [|z||=1 and
(Z¥y*)(z)= u(y*, N)/2. By the 1-unconditionality of {Y,}, we may assume
there are {z'}' C Y so that z =3V ¢i(z'). From section 0, w = X z'/N satisfies
IZF wi||=2 and (Z¥y¥)(ZF wi) = (ZVy T)(2).

We need to show ||w]|| is small. Let v =w/|w]|. Now A(v,N)=||ZVv | =
1= w:ll/lw|. Thus |wlA(v, N)=2. So [[w||=2/B=4/A(y,N) and pu(y*,N)=
22Ty ¥)(z)=2Ny*(w)=2N|w| =8N/A(y,N). It is now straightforward to
check that for any scalars {a}, =} ay:|l/A(y, N)=(EF|a:|*)/8BAN"" and
1= ay*/u(y, N)= (EF|a: |*)/SAN"*. This completes the proof.

§3. The theorem and applications

PrROOF OF THEOREM 1. Let X be non-reflexive with X*/X° reflexive. By the
principle of local reflexivity [8, p. 196] and by denseness of U X" in X*, finite
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rank projections on X can be pulled down to X. Hence it suffices to prove the
theorem for X*.

Using the notation of Corollary 6, by Lemma 5 [Y]i" is 2-complemented in
X. Further, by Proposition 9, [Z;]1 is 2-complemented in [ Y; [i™. Thus an appeal
to Proposition 11 completes the proof.

For a Banach space X define R(X)= X?/X° and define R,(X)= R(X),
R..(X) = R(R/(X)) (as in [3]).

CorOLLARY 12. If X is non-reflexive but for some integer k, R, (X) is reflexive
(or equivalently R, .,(X)={0}), then X has uniformly complemented [} s.

Proor. The theorem applies to R._,(X) hence its bidual (R.-«(X)) has
uniformly complemented [;’s. Since (R(X))’ is complemented in X*, local
reflexivity completes the proof.

CoroLLARY 13. If X is non-reflexive, but 1, is not finitely representable in X,
then X has uniformly complemented 1’s.

ProoF. In [3], it is shown that if the hypothesis of Corollary 12 is false, then I,
is finitely representable in X. Hence X has uniformly complemented I;’s. Now p
must be 2, since /; is finitely representable in the sequence {/7} or {/z} (see [10,
p. 97)).

COROLLARY 14. If either X or Y satisfies the hypothesis of the theorem, then
there are compact non-nuclear maps from X to Y and Y to X.

PROOF. See proposition IV.4 of [6].

CLosING REMARKs.  Consider the general case of X non-reflexive. There are
two ways to try to generalize the above proof to this case.

(i) Just define S; (respectively, Q) to be the identity on [Y;]iz} and to be S,
(respectively, Q) on [ Y;]7~:. It is easy to see that these new operators have norm
=3. The proof of Proposition 8 requires that these operators have norm one.
However, the theorem holds if X can be renormed so that the S;’s and Q,’s have
norm one on X*“.

(if) In Proposition 7, we observed that S, restricted to the kernel of Q, (in
X% = X" (in X*) is the identity. Thus if we let W, = X" (in X*) (or more
precisely - - JoJoJ(X™)) and let W, = Si(W,), then {W;} is a fibered ESA
decomposition. Each W, is complemented in Y;, however this yields an
unworkable estimate of the norm of the projection of [Y;]iL; onto [W;]iL,. If
[W:]iL: are uniformly complemented in X then the theorem holds.

The author does not know if either method will work in general.
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Added in proof. Additional progress on the uniformly complemented I;-
conjecture has been made by G. Pisier (Holomorphic semi-groups and the
geometry of Banach spaces, preprint). Pisier proves that the conclusion of
Corollary 13 is still true without the hypothesis that X is non-reflexive. In
particular, super-reflexive Banach spaces have uniformly complemented /3’s.
This result together with standard ultraproduct constructions or nonstandard
analysis imply that if the uniformly complemented /;-conjecture is false, then
there is a non-reflexive Banach space X without uniformly complemented
I;-spaces. Such a space X must be “‘infinitely”” non-reflexive in the sense that X
violates the hypothesis of Corollary 12.
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