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UNIFORMLY COMPLEMENTED /p'S IN 
QUASI-REFLEXIVE BANACH SPACES 

BY 

STEVEN F. BELLENOT 

ABSTRACT 

It is shown that for every non-reflexive Banach space X with X**/X reflexive 
there exists a uniformly bounded sequence of projections {Po }~=, whose ranges 
are uniformly isomorphic to {l~,}~=, either for p = 1, or p = 2 or for p = oo. The 
proof uses knowledge of the transfinite dual X ", ESA Schauder decompositions 
and proof of a similar statement for spaces with an unconditional basis due to 
Tzafriri. 

It has been  conjec tured  that  each infinite d imensional  Banach  space  X has 

uni formly  c o m p l e m e n t e d  l~,'s [8] (and see [12]). By X having uni formly  

c o m p l e m e n t e d  l~'s, we m e a n  there  is some  cons tant  K and some  p = 1 or  p = 2 

or  p = ~ and a sequence  {P,}~=~ of pro jec t ions  on X, so that  for each n, liP, II-- K 
and d (l~,, P,  (X))  _-< K. (Since l~ is uni formly  c o m p l e m e n t e d  in l~", for  1 < p < ~,  

the  l imitat ion that  p = 1, 2 or  ~ is not  of consequence . )  Our  main  result is: 

TrtEOaEm 1. If X is a non-reflexive Banach space, with X * * / X  reflexive, then 
X has uniformly complemented l~'s. 

It  is known that  the infinite d imens ional  Banach  space X has uni formly  

c o m p l e m e n t e d  l~'s if e i ther  

(i) X has an uncondi t ional  basis [14], 

(ii) X has Lust  and is not  super-ref lexive [6], 

(iii) X is a subspace  of a Banach  lattice Y and l= is not  finitely represen tab le  

in Y [7], or  if 

(iv) X is a special reflexive Banach  space (see [11] for  details). 

Each  of the above  results  requires  some  "uncondi t ional -bas is - l ike  s t ruc ture . "  

In contrast ,  it is known that  if X satisfies the hypothes is  of  T h e o r e m  1, then X is 

not  i somorphic  to a subspace  of any Y which has an uncondi t ional  basis, or  m o r e  

general ly ,  any Banach  lattice Y with p rope r ty  u. 
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Theorem 1 also yields new partial positive answers to a question of Grothen- 

dieck [5] about the existence of non-nuclear operators (see Corollary 14). 

The proof of Theorem 1 is given in Section 3. The proof makes use of 

properties of the transfinite dual X ~ of X and these results are in Section 1. In 

Section 2, we prove the following generalization of the result of Tzafriri's quoted 

in (i) above: subsymmetric Schauder decompositions have uniformly com- 

plemented l~'s. 

w Preliminaries 

We will adopt the Standard Definitions, Notations and Conventions of [10, p. 

xi-xiii] where all undefined terms may be found. We will write {x,}, [x,], ~ x. for 

{x.}:=~, closed linear span {xn}:~ and ~ x . ,  respectively. All our spaces are 

normed and are usually complete. 
Let X be a Banach space. A sequence {X. } at closed subspaces of X is called a 

Schauder decomposition [10, p. 47ff] if X = [X.] and there is a constant K, so 

that 

<0, II  ll  fJ  xll , 

for all positive integers p, q and elements xi ff X~. The decomposition is said to 

be unconditional if there is a constant M so that 

for all positive integers n, elements x, E X,, and scalars bl with I b~ I --< 1. The 
smallest constant M which satisfies (1) is called the unconditional constant of the 

decomposition. 
We will say that the decomposition {X.} of X is fibered by Y if there are 

isometries 4~ : Y--~ Xn and On : X~ --~ Y with 4~0n = 0,4~. = identity, for each n. 

A fibered decomposition {X,} of X is said to be subsymmetric if it is 

unconditional and if 

for all positive integers n, increasing sequences of positive integers {re(i)} and 

elements x, E X~. Standard re-norming techniques will yield an equivalent 

subsymmetric norm on a subsymmetric decomposition whose unconditional 

constant is one (see [10, p. 114]). If {Xn} is a subsymmetric decomposition, then 
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the projection 7", : X ---, X which takes X x~ onto E7 ~b~ (w) has norm at most two, 

where w = (XTO~x,)/n (see [10, p. 116]). 

We will say that the fibered decomposition {X, } of X is E S A ,  if for each n, m 

with 1 =< rn _-n and elements x~ E X~, we have 

(3) II 1~ Xi 112 [I ~ll Xi "~- m+l ~ Xi -~- Wrrt II 

when w,, is either qb,.§ rn =>1, or cb,.-l(O,,x,,), m _-->2. This definition 

implies the notion of ESA basis, as in [2], if the fiber is one-dimensional (see [2, 

p. 288] for a proof of this). 

We also need the notion of the transfinite dual X ~ of a Banach space X as in 

[3]. Let X ~ be X and inductively define X "*~= (X")*, the dual of X". Let 

J, :X"  --~ X "*2 be the canonical injection. We will identify X" with its image 

under J~ in X "§ Then X ~ is defined to be the completion of the norm space 

13 X ~". We will use the following notation for adjoints, if T("~: X" --~ Y" then 

T~"+I): Y"+~--~X "+~ is the map (T~"~) *, and T ~~ = T. 

w O pe r a tor s  on  X ~ 

For any Banach spaces X and Y any bounded linear operator  T :  X ~ Y, the 

diagram in Fig. 1 commutes (here J is the canonical injection) and II Z'2'll = If zll. 

T 
X >Y 

X2 T ~  y2 

Fig. 1. 

It follows now from Fig. 2, that there is a unique operator  T ~ : X ~ --> Y~ that 

extends each T'2n': X 2~ ---> y2,, furthermore tt T'~ 11 = II T I[-(The downward point- 

ing arrows are the canonical injections.) 

In particular, for T : X  2~ ---> X TM, between even duals of X, then T ~ maps X ~ 

into itself. Furthermore,  if T is an isometry (respectively, projection, contrac- 

tion) then T ~ is also an isometry (respectively, projection, contraction). 

Actually it is not hard to see that fl, which assigns X ~ to each Banach space X, 

and T ~ to each bounded operator  T, is a covariant functor. (Note that X ~ - X, if 

X is reflexive.) To see this, let T, S, R be operators so that T = SR,  then 

T t2n)= St2")R t2"~ and hence T ~ = S~ ~. Furthermore,  if T : X - - - > X  is id, the 

identity, then T ~ -- id  on X ~. 
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T 
X > Y  

I 1 
X2 r(2)) y2 

X4 r(~ y4 

i i 
X2 ~ T(~.) y2. 

T~ 
X ~ ) y ~  

Fig. 2. 

DEFINITION 2. Following Perrott [13], we define the isometries Si for i _-> 0 

and the contractions Qi for i _-> 1 on X '~ by (see Fig. 3) 

(4) S~ = (J2,)% where J2~ : X 2~ --~ X 2~+2 and i => 0, and 

(5) Qi = (J~2~)-1) ~, where r~ 2~ and i  > 1 .=  

Our next result gives a "multiplication table" for these operators. It is well 

known that if X is non-reflexive, then the Si's are not the id. In fact, Jr02) and J2 

both: X2---~X 4 disagree on each x E X2\Jo(X ~ was known by Dixmier [4] in 

1948. 

PROPOSITION 3. 

(6) 

(7) 

s, sk = [ i sk+'s, 
if j<-_k, 

I s~sj_, if j >k;  

OsOk = l Ok- 'oj  if i < k' 

IQEQ,+, if j > - k ;  

(8) 

(9) 

if j < k ,  

1Q~Sj+, if j >= k ; 

I S~_,Q~ if j < k ,  
QsS~ = " if j = k or j = k + l, 

1SkOj-, if j > k + l. 
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J2~ 
X ~ , X 2~+2 

X2i+2 ~.X 2i+4 

X 2 i +  4 J(27 )X2i+6  

l 1 

X 2i+2k ) X T M  

X2i+2k +2 s'~ +~ X2i+2k +4 

L 1 
: : 

S i 

X ~o , X ~" 

s~'?_, 
X 2i+2 , X 2i 

J(2~ ) 1 X 2i+4 , X 2i+2 

15) J21 I X2i  +6 , X2 i  +4 

l t 

X2i+2k+2 ~2i-| ) x2i+2k 

S~,+2E +2 [ [ h~+~k 

�9 s(~_ +~) X2,+2k+4 2 | ) X2i+2k+2 

l t 
o, 

X ~ _ _ _ .  X ~ 

Fig. 3. 

PROOF. These relations are obtained by looking at the definition of St and Q~ 

(see Fig. 3), their transposes and using the functor fl. The exception is the middle 

line of (9), which we do in detail. 

It is well known and easy to check that the composite map: 

(10) 
X 2  i J21 ) x 2 i +  2 J~li)~ I X 2  i 

, 2,-,) (J2,)" =id .  is the identity. Hence O~S~ = ( j ( o  ,~ 

Each statement like (10) is a dual statement obtained by subtracting one from 

everything and taking transposes. For (10) we have 

d21 i 
X 2 i  1 > x 2 i + l  J~'i)-2) X 2 i - i  

is the id (here i must be greater than one). Transposing we obtain 

X2~ (#,)-' X~+~ j'Z,) ~ X2~ 
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whose composition is also the id. Hence id = (J~i)_,)'~ (J~2)_2) ~~ = Q i S i - 1 ,  for i _-> 1, 

since (j~22~-2) ~~ = (J2,_2) ~ = S,_,. This completes the middle line of (9). 

To obtain (6), look at the k th box in the definition of S, in Fig. 3. We have 

j !"(2k) - -  J t2k+2)  j ~  
2i+2k+2d2i  - -  2i d2i+2k 

which by 12 yields &+k+~& = S,&+k, i, k >=0. Inspection will show this is 

equivalent to (6). 

The dual to the k-th above yields QiQ~+k< -- Q~+kQ~, i >= 1, k _-> 0 which is 

equivalent to (7). 

Now looking at the k-th box in the definition of Q, in Fig. 3 we obtain 

S,+kQi = Q i S i + k + l ,  i >= 1, k -->0 

which yields half of (8) and (9). The other half follows from the dual of this k-th 

box 

S i Q i + k + l  ~-" Q i + k + 2 S i ,  

This completes the proof. 

COROLLARY 4. 

i ~ O ,  k ~ O .  

(11) S { Q I S ' 1 Q I = S r Q r ,  n =max{i,]},  if i,]>_O; 

(12) S.+kS~Qr=S~&Q~=S~Q~S.+k,  if n=>0, k - > l ;  

(13) Q.+k+ISrQ~ = STQ~+IQ" = S~QTQ.+k+~, if n gO,  k >->_ 1; 

(14) Qk+IS~Q k, = QISk, Q k, and &+,Sk, Q~ = S,S~Qk,, i fk  _->0; 

(15) k k k k+, gO. SIQ,Q~+, = S1O,  , if k 

(16) Let n>j>-_ l .  Then TV(S{-~Q{ I - S ' ; Q { ) = 0  when V = &  or Q. and 
T J J = SIQI  or I -  SJl 10{-1. 

PROOF. The equations (11)-(15) are straightforward applications of Proposi- 
tion 3. To see (16), consider the special case, V = Q,, T = ST-'Q7 -1. Now (16) 

follows from (15) and ST- '  QTST-2Q7  -2 = S7 ' Q7  = ST- '  QTS7 ' Q7 '. Otherwise, 

(12) or (13) implies T commutes with V and V(S{-~Q{ - 1 -  S i Q { ) =  0 follows 

from (11). 

REMARK. One can obtain similar relations for general T : X  2" -+ X 2m from 

the definition of T ~'. Namely 

T~S~+k = S~+ET ~ and Q~+E+1T ~ = T~Q..k+I, k >=0. 
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The next Lemma is most likely known, a proof is included for completeness. 

LEMMA 5. If  S, Q : X--~ X are norm one operators, with S an isometry and 

QS = id, then the kernel of the norm one projection S"Q" is the direct sum 

Y~ @ Y 2 @ " "  @ Y.,  where Y~ = ker QI and Y~+1 = S(Y~). 

PROOF. Let  P. = S"Q". Since S"Q"S"Q" = S" id Q n = p, ,  we have that P. 

is a projection, similarly P, Pm= P.P,, = Pmaxt,~.~. Thus the kernel of P. is the 

direct sum 

(I  - Pt) (X)  @ (P1 - P2) (X)  @ . . .  @ (P._1 - P. ) (X).  

Since S is an isometry, ker O = ker P1 -- YI. We complete, the proof by showing 

Y, = ( P . _ ~ - P . ) ( X )  by induction. If y ~ Y., there is x ~ Y1 so that S"-~x = y. 

Since P._~S"-lx -- S"-~(id)x = y and P~S"-~x = S"Q id x = S"0 = 0, we have 

one inclusion. Suppose x = P._~x - P.x = S(P.-2 - P. 1)Ox. Taking O of both 

sides implies Ox ~ ( P . _ 2 - P . _ ~ ) ( X ) =  Y._~ and so x = P l x  E Y. since 

( p . _ ,  - e . ) p ,  = P . _ ,  - p . .  

COROLLARY 6. Let Y = Yt = kernel of Ol in X ~ and let Y~+1 = S~(Y~). For 

y ~ Y, define yl = y and y,+~ = S~(y,). 

Then S'l(y~) = Y,+i, Ol(y~) =0 ,  and O~(y~+~)= y~, for i >-_ 1. 

Furthermore, S~(yj) = yj+l, O~(yj) = yj-~, if j > i > 1 and S~(Yi), Q~(Y/) c Y/, if 

l<-_j<i. 

PROOF. The Furthermore statement follows from (14) and (16) of 

Corollary 4. 

Unfortunately, Sk[ Ys need not be the identity for 1 = j < k. 

PROPOSITION 7. The following are equivalent: 

(i) $2 [ Y~ is the identity. 

(ii) T[ Yj is the identity, for T = S, or Q, and n > j >- 1. 

(iii) S, I Y~ is the identity, for some n >= 1. 

(iv) The space X 2 / X  ~ is reflexive. 

PROOF. Since S,+,S, = S~S,, we have S, t Y = id implies S,+~ I Y = id. Con- 

versely, if S,+~[Y = id and S , ( Y ) C  Y, it follows that S, is a projection on Y. 

Since S. is an isometry, ker S, = {0} and hence S , [ Y  = id. Therefore,  (iii) 

implies (i) implies S. [ Y~ = id for n > 1. 

This implies (ii) for T = S . ,  since by (12), we have S , [ Y j =  

S{-1(S,_j+t [ YI)Q{ -1. Since Q.S, = id, (ii) is true for T = Q, as well. Therefore  

(i), (ii) and (iii) are equivalent. 
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Now consider  Z = X : / X  ~ and let T : X 2 ~ Z be  the quot ien t  map.  It  is well 

known [4], that  T~ 2 has a right inverse V:ZZ---~X 4 so that  V is an 

i somet ry  and the  short  exact  sequence  

v X ~ 4")  X 2 0 ~ Z  2 ' >0 

splits via J2: X 2---~ X 4. It  follows that  V'2~(Z 4) = ker  j~3), 

V ( Z  2) and that  the short  exact  sequence  

V~ Ot 
0 ~ Z  ~ > X  ~ ~ X  ~ >0 

v<~(z9 n I~(x9 = 

splits via St: X ~ --~ X ~. 

Now if Z is not  reflexive, then  Z 4 7 ~ Z 2 and there  is x E ker  J~3)\J4(X4) C Y1. 

H e n c e  S2x = J~42)x # J6x = x and so (i) is false. Thus  (i) implies (iv). Converse ly ,  if 

Z is reflexive, Y~ = ker  Q1 = V ~ ( Z  ~) = V ( Z  2) and $2 is the ident i ty on all of X 4 

and the proof  is comple te .  

REMARK. We no te  that  $2 defined for  X '~ restr ic ted to V'~  ~) yields S~, 

defined for Z ~, since 

v 

Z :  ~ X ~ 

V(2) 

Z ~ ~ X ~ 

commutes .  

PROPOSITION 8. I[ X is non-reflexive but X 2 / X  " is reflexive then using the 

notation of Corollary 6, the fibered decomposition { Y~ } is ESA.  

PROOf. If {y'}7 ~ C Y = Y~, let y ) =  S~-~(y'). We  must  show that  the  n o r m  of 

z = Y-7=I y~t is at least as bi~ as the  n o r m  of each of the fol lowing e lements :  

m--1 s 
�9 i 

(17) ~ y', + y, + w,,, 
1 M+I  

,. ,. 1__< < [ ]. for  w m = y m + l o r  y m-1, m___n set y ~ = 0  

This  is easy using the results  of  Corol la ry  6 and  Propos i t ion  7 since e i ther  

Qm+2Smz or SmO,~z is the vec tor  (17) and these ope ra to r s  have  n o r m  one.  

REMARK. If X 2 / X  ~ is one-d imens iona l ,  this is a result  of Per ro t t  [13]. In  fact,  

the p roof  of Propos i t ion  8 is very  much  like tha t  in [13]. 
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PROPOSITION 9. A fibered ESA decomposition has a complemented subspace 

with a fibered subsymmetric decomposition. 

PROOF. For the reader 's convenience we will prove this using the notations 

used in the proof of Proposition 8. Note that the operators S~ and Q~, i _-> 1 are 

well-defined on the span {Y~}. First we show these operators must have norm 

one. 

To see 11 S, [I--< 1, note 

II I1 II II II , ,11 yj > ~ y i + y : +  l ___> y~+ i = = . .  �9 y j + l  S~  y . 
j = l  j = l  l lJ=l j = l  = 

Actually S~ is an isometry since these steps are reversible. The norm of Q, is one 

since 

---- y i - l +  yJ = yJ + y i - , +  Yi-1 
1=1 j= j = i + l  I l j = l  j=i+l 

which is [[ Q~ (ET=, y~ )[[. 

Let Z~ C Y2~ l + Y2~ be defined by Z~ = {yz~-, - y2~ : y E Y}. Note that {Z~} is a 

block decomposition of the { Y~ }, fibered by Z~. We claim that [Z~ ] is the desired 

subspace. 

First {Z } is orthogonal, hence unconditional, for reasons similar tO the proof 

of this result for ESA basis in [2]. To illustrate this, we show how to remove the 

middle term of A = [[z[ - z~ + zl  - z• + z 3 -  z~[[. This norm is equal to the norm 

of each of 

z ' , - z ~ +  ~ 2 z~-z~+,+z~+4- ~ 3 < +2.  zN+s, = i  <=N 

Averaging we have 

A >[lz',-z'~+(z~-z~+a)/N+z~+4-z~+s[[ 

=llzl- z + (zl-  zl)/N + z ll llzl- + 3z,- z:ll. 

The decomposition is subsymmetric, which can be seen by applying suitable 
repetitions of the isometrics Si's as in [13]. 

Finally the projection P is given by 

= (y2,-~ -- y2,-~ 4- Y2i-- y~,-1). 
2i=1 

It is straightforward to check that p2 = p. To see that P is bounded, it suffices to 

show I -  P is bounded. Now 
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21=1 ~y2i-J+y2,-l+y2i+y2i ) 

= I[('"S6Q6S, Q4S2Q2)+(...S~Q6S3Q4S1Qz)] (~ yl), 

which clearly has norm one. This completes the proof. 

R ~ R K .  The operator �89 S~Q6S4QaS202)+("  "SsQ6S~QaS, Q2)] is a 

well-defined norm one projection in each X ~. To see this note that the collection 

{$2,Q2., S2,-IQ2. : n = 1, 2 , " "  } is a collection of commuting projections except 

for S2.Q2,S2.-,Q2. = S2,O~, and $2. 1Q2.S2,Q2. = S2.-102.. Since $2,Q2. is the 

identity on X ~", the infinite composition . . .  S4Q4S2Q2 is a well-defined norm 

one operator on [,.J X ~" which is dense in X '~ If P, R are the two infinite 

compositions above we have PR = P and R P  = R and the result follows. 

w Complemented l~'s in subsymmetric decompositions 

In [14], Tzafriri proved that Banach spaces with an unconditional basis have 

uniformly complemented l~,'s for either p = 1, 2 or p = o0. Proposition 11 shows 

how to modify Tzafriri's proof to handle the case for Banach spaces with a 

subsymmetric decomposition. There are three points in which the proof below 

differs from that of Tzafriri. We have no need for Ramsey's Theorem, 

proposition 5 of [14] needs the addition of Lemma 10 and case III of theorem 1 

of [14] needs a different argument. 

LEMMA 10. If { y , } ~ C X a n d  {y* N , }1 C X are a bi-orthogonal sequence. Sup- 

pose there is a constant K so that for any scalars {ai}, 

and 

a,y, <--_K [a,[ z 
1 

,U a~y =< K ai 2 
1 

then the projection Px = X~ y * (x )yi has norm <= K 2 and d (P(X) ,  l~ ) <= K% 

PROOI:. Straightforward. 

PROeOSrnON 11. I f  X has a subsymmetric decomposition { Y .  } with fiber Y, 

then X has uniformly complemented l~'s. 
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PROOF. We follow the proof of theorem 1 of [14]. As in [14] we may assume 

that the unconditional constant is one, and we identify three cases. 

Let y E Y (respectively y * E  Y*) be a norm one element, define A(y, n ) =  

[IE~ y, 1] (respectively p.(y*, n) = IlX~ Y*~ 11). 

Case I. For each h > 1 there are y E Y with Ily II = 1 and n so that 

A (y, hn)/)t (y, n) < 2. Then as in [14], there is are 12's uniformly complemented in 

X. 

Case II. For each h > l  there are y * E  Y* with I ly*][=l  and n so that 
/x(y*, hn)/lz(y*, n ) < 2 .  Then similar to case II in [14], there are uniformly 

complemented 17's in X. 

Case IlL All others. Using proposition 4 of [14], we have the existence of a 

constant A and q > 2  so that for any norm one elements y E Y or y* E Y* we 

have 

(18) 
\ l/q / l/q II a,y, / . ,  and 

. \ t/q t 
(19) II a,y 
for any scalars {a,}. [Here A,q are independent of y, y* and n.] 

To complete the proof it suffices to find y * , y  with y * ( y ) = l  and lower 

Lq'-estimates for (18) and (19), where 1/q'+ 1/q = 1. This follows since the 

Rademacher  elements of [yi ]~" and [y*]~" satisfy the hypothesis of Lemma 10 (see 

proposition 5 of [14]). 

To do this let n be given and let N = 2 "  and define B =inf{A(y ,N) :  y E Y, 

II Y II -- 1}. Choose y E Y, so that II y II = 1 and B _-< h (y, N)  _-< eB. Let y * E Y*, 
I l Y * l l = y * ( y ) = l ,  clearly ~(y*,n),~(y,n)>=s. Let z E X  with I l z l l= l  and 
(E~ y *) (z) => ~ (y *, N)/2. By the 1-unconditionality of { Y, }, we may assume 

there are {z'}TC Y so that z = E~th~(z~). From section 0, w = E~z' /N satisfies 

IlY.~w,[l<2= and (E~y~) (E~ 'w , )=  (E~y*,)(z).  

We need to show Uwll is small. Let v = w/llwll. Now A(v,N)--II~Vo, II= 

II zV w, 11/11 w II. Thus tl w IIx iv, N)  ~ 2. So II w I! -<- 2/• ---_ 4/h (y, N) and # (y *, N) _-< 
2(Y.~y *,)(z) = 2Ny*tw)  =< 2N II w II =< 8N/;~ (y, N). It is now straightforward to 

~ l / q  
check  that  for any scalars {a,}, IlY~Ta,y, II/A (y, N)_-> (~,~1 a, 1"')/8AN ' and 

II ~U a,y *~ II/~ (y, N)  _-__ (~,~1 a, I ~ ')~SAN TM', This completes the proof. 

w The theorem and applications 

PROOF OF THEOREM 1. Let X be non-reflexive with X:/X ~ reflexive. By the 

principle of local reflexivity [8, p. 196] and by denseness of U X 2" in X ~, finite 
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rank projections on X ~ can be pulled down to X. Hence it suffices to prove the 

theorem for X '~ 
Using the notation of Corollary 6, by Lemma 5 [ Y]~' is 2-complemented in 

X '~ Further, by Proposition 9, [Z,]~' is 2-complemented in [ Y~]~'~. Thus an appeal 

to Proposition 11 completes the proof. 
For a Banach space X define R ( X ) = X 2 / X  ~ and define R I ( X ) = R ( X ) ,  

R,§ = R(R,(X))  (as in [3]). 

COROLLARY 12. If X is non- reflexive but for some integer k, Rk (X) is reflexive 
(or equivalently Rk+I(X) = {0}), then X has uniformly complemented l~'s. 

PROOF. The theorem applies to Rk-~(X) hence its bidual (Rk_1(X)) 2 has 
uniformly complemented l~,'s. Since (R(X))  2 is complemented in X 4, local 

reflexivity completes the proof. 

COROLLARY 13. If X is non-reflexive, but Ii is not finitely representable in X, 
then X has uniformly complemented l~'s. 

PROOF. In [3], it is shown that if the hypothesis of Corollary 12 is false, then l~ 

is finitely representable in X. Hence X has uniformly complemented l~,'s. Now p 

must be 2, since l~ is finitely representable in the sequence {l~'} or {l~"} (see [10, 

p. 97]). 

COROLLARY 14. If either X or Y satisfies the hypothesis of the theorem, then 
there are compact non-nuclear maps from X to Y and Y to X. 

PROOF. See proposition IV.4 of [6]. 

CLOSINO REMARKs. Consider the general case of X non-reflexive. There are 
two ways to try to generalize the above proof to this case. 

(i) Just define S~ (respectively, Oi) to be the identity on [Y;]j~-~I and to be S~ 
(respectively, Q~) on [ YJ]7~,- It is easy to see that these new operators have norm 
=< 3. The proof of Proposition 8 requires that these operators have norm one. 

However, the theorem holds if X can be renormed so that the ~ 's and 0~ 's have 
norm one on X '~ 

(ii) In Proposition 7, we observed that $2 restricted to the kernel of Q~ (in 
X 4) = X ~• (in X 4) is the identity. Thus if we let W~ = X ~l (in X '~ (or more 

precisely ...J8J6J4(XI~-)) and let W~§ = SI(W~), then {W,} is a fibered ESA 

decomposition. Each W~ is complemented in Y~, however this yields an 

unworkable estimate of the norm of the projection of [Y~]7~1 onto [W~]~=I. If 
[W~]~=I are uniformly complemented in X ~ then the theorem holds. 

The author does not know if either method will work in general. 
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A d d e d  in proof. A d d i t i o n a l  p rogress  on  the  un i formly  c o m p l e m e n t e d  l~,- 

con jec tu re  has been  m a d e  by  G.  Pisier  (Holomorphic semi-groups and  the 

geometry o f  Banach  spaces, prepr in t ) .  Pis ier  p roves  that  the  conclus ion  of 

Coro l l a ry  13 is still t rue  wi thou t  the  hypo thes i s  that  X is non-ref lexive .  In  

par t i cu la r ,  super - re f lex ive  B a n a c h  spaces  have  un i formly  c o m p l e m e n t e d  l~'s. 

This  resul t  t o g e t h e r  wi th  s t a n d a r d  u l t r ap rod uc t  cons t ruc t ions  or  n o n s t a n d a r d  

analysis  imply  that  if the  un i fo rmly  c o m p l e m e n t e d  l~,-conjecture is false,  then  

the re  is a non- re f lex ive  B a n a c h  space  X wi thout  un i fo rmly  c o m p l e m e n t e d  

/~,-spaces. Such a space  X must  be  " in f in i t e ly"  non-ref lex ive  in the  sense  that  X 

viola tes  the  hypo thes i s  of  Coro l l a ry  12. 
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